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ABSTRACT 
With this paper, we discuss some important aspects related to the iterative solution of two classes of polynomials, 

nonlinear systems of equations, and the adapted to them – "FAST adaptive neural solver" (FANS). The crucial 

issue of choosing initial approximations (separation of unattractive networks of initial data) and the possibility of 

minimizing CPU–time with the use of existing FANS is discussed. 

 

INTRODUCTION  
Polynomial systems of equations are of major interest and they are heavily used in any discipline of sciences such 

as mathematics, physics, chemistry and engineering. 

According to [1], [2], the approaches for solving polynomial systems of equations can be classified in two 

categories as follows: 

”1. Symbolic methods that stem from algebraic geometry; 

2. Numerical methods, based on iterative procedures. These methods are suitable for local analysis only and 

perform well only if the initial guess is good enough, a condition that generally is rather difficult to satisfy.” 

In [1] the authors considered the neural network architecture for the system of polynomials 

 

 𝑓𝑖(𝑥) = ∑
𝑘𝑖
𝑗=1 (𝑎𝑖𝑗∏

𝑛
𝑙=1 𝑥𝑙

𝑒𝑙𝑗
𝑖

) − 𝛽𝑖 = 0;  𝑖 = 1,2,… , 𝑛, (1) 

where in every exponent 𝑒𝑖 the superscript 𝑖 denotes the equation, the first subscript 𝑗 denotes the factor of the 

summation in equation 𝑖 and the second subscript 𝑙 denotes the corresponding unknown 𝑥. 

Introduced in [1] neural solvers gave good results for polynomial systems associated with chemical engineering 

applications. 

For other results, see [4]–[9]. 

The point 𝑥̃ ∈ 𝑅𝑛 is an equilibrium point for the differential equation  

 
𝑑𝑥

𝑑𝑡
= 𝑔(𝑡, 𝑥) 

if 𝑔(𝑡, 𝑥̃) = 0 for all 𝑡. 
Of course, as we have already mentioned, it remains of crucial importance to choose initial approximations for 

which researched numerical method or iterative procedure is convergent. 

 

The article is structured as follows. Firstly in “MAIN RESULTS” we explore one special class of polynomial 

systems and give an analytical description of the non-attractive sets to be considered by the specialists working in 

the direction - generating of FANS. 

 

Similar issues are discussed in “Solving the more general polynomial systems class of the type (1)” - to solve 

an arbitrary nonlinear system based on the use of fast-acting iterative procedures with order of convergence 𝑡 
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(appearing as modification of classical Newton-Broyden method). 

 

MAIN RESULTS 
We will illustrate the said for a special class of polynomial systems. 

Many problems in mathematics and other natural sciences and techniques reduce themselves to determining all 

roots of a system of equations:  

 |
|

𝑓1(𝑥) = 𝑥𝑑1 + 𝑎1,1𝑥
𝑑1−1 +⋯+ 𝑎1,𝑑1 = 0,

𝑓2(𝑥) = 𝑥𝑑2 + 𝑎2,1𝑥
𝑑2−1 +⋯+ 𝑎2,𝑑2 = 0,

⋯
𝑓𝑛(𝑥) = 𝑥𝑑𝑛 + 𝑎𝑛,1𝑥

𝑑𝑛−1 +⋯+ 𝑎𝑛,𝑑𝑛 = 0,

 (2) 

 

where 𝑓𝑗(𝑥) are polynomials of degree 𝑑𝑗, 1 ≤ 𝑗 ≤ 𝑛 with simple zeros. Let 𝑥𝑖,𝑗
𝑘 , 𝑖 = 1,2,… , 𝑛;  𝑗 = 1,2,… , 𝑑𝑖, be 

distinct reasonably close approximations of these zeros. Usually, the Weierstrass procedure is used to solve the 

problem [45]:  

 𝑥𝑖,𝑗
𝑘+1 = 𝑥𝑖,𝑗

𝑘 −
𝑓𝑖(𝑥𝑖,𝑗

𝑘 )

∏
𝑑𝑖
𝑙≠𝑠 (𝑥𝑖,𝑙

𝑘 −𝑥𝑖,𝑠
𝑘 )
;  𝑗 = 1,2,… , 𝑑𝑖;   𝑖 = 1,2, … , 𝑛. 

 

Finding the zeros of the polynomial system (2) is related closely to research in the area of ”chemical equilibrium 

applications”, ”kinematic applications” and others. Following the ideas given in [34], [30] we obtain  

 

 

∑𝑑𝑟𝑝=1 𝑥𝑟,𝑝
𝑘+1 = −𝑎𝑟,1,

∑𝑑𝑟𝑝=1 𝑥𝑟,𝑝
𝑘+1 ∑𝑑𝑟𝑞≠𝑝 𝑥𝑟,𝑞

𝑘 = ∑
𝑑𝑟
𝑙<𝑠 𝑥𝑟,𝑙

𝑘 𝑥𝑟,𝑠
𝑘 + 𝑎𝑟,2,

∑𝑑𝑟𝑝=1 𝑥𝑟,𝑝
𝑘+1 ∑𝑙<𝑠;𝑙,𝑠≠𝑝 𝑥𝑟,𝑙

𝑘 𝑥𝑟,𝑠
𝑘 = 2∑

𝑑𝑟
𝑙<𝑠<𝑡 𝑥𝑟,𝑙

𝑘 𝑥𝑟,𝑠
𝑘 𝑥𝑟,𝑡

𝑘 − 𝑎𝑟,3,
…
∑𝑑𝑟𝑝=1 𝑥𝑟,𝑝

𝑘+1∏𝑑𝑟𝑞≠𝑝 𝑥𝑟,𝑞
𝑘 = (𝑑𝑟 − 1)∏

𝑑𝑟
𝑞=1 𝑥𝑟,𝑞

𝑘 + (−1)𝑑𝑟𝑎𝑟,𝑑𝑟 , ;   𝑟 = 1,2,… , 𝑛.

 (3) 

 

The resulting systems of equations (3) can be written in vector form as:  

 𝐴𝑑𝑟
𝑟 𝑥𝑟𝑑𝑟

𝑘+1 = 𝑏𝑑𝑟
𝑟 ;   𝑟 = 1,2,… , 𝑛, 

where  

 𝐴𝑑𝑟
𝑟 : =

(

 

1 1 … 1
∑𝑞≠1 𝑥𝑟,𝑞

𝑘 ∑𝑞≠2 𝑥𝑟,𝑞
𝑘 … ∑𝑞≠𝑑𝑟 𝑥𝑟,𝑞

𝑘

⋮ ⋮ ⋮
∏𝑞≠1 𝑥𝑟,𝑞

𝑘 ∏𝑞≠2 𝑥𝑟,𝑞
𝑘 … ∏𝑞≠𝑑𝑟 𝑥𝑟,𝑞

𝑘
)

 , 

 

 𝑑𝑒𝑡𝐴𝑑𝑟
𝑟 = ∏

𝑑𝑟
𝑖<𝑗 (𝑥𝑟,𝑖

𝑘 − 𝑥𝑟,𝑗
𝑘 ) ≠ 0, 

 

 𝑥𝑟𝑑𝑟
𝑘+1: =

(

 
 

𝑥𝑟,1
𝑘+1

𝑥𝑟,2
𝑘+1

⋮
𝑥𝑟,𝑑𝑟
𝑘+1

)

 
 
, 

 

 𝑏𝑑𝑟
𝑟 : =

(

 
 

𝑏𝑟,1
𝑑𝑟

𝑏𝑟,2
𝑑𝑟

⋮

𝑏𝑟,𝑑𝑟
𝑑𝑟
)

 
 
=

(

 
 

−𝑎𝑟,1

∑𝑑𝑟
𝑙<𝑠 𝑥𝑟,𝑙

𝑘 𝑥𝑟,𝑠
𝑘 + 𝑎𝑟,2

⋮

(𝑑𝑟 − 1)∏
𝑑𝑟
𝑞=1 𝑥𝑟,𝑞

𝑘 + (−1)𝑑𝑟𝑎𝑟,𝑑𝑟)

 
 
, 𝑟 = 1,2,… , 𝑛. 

We shall use also the notations  

 𝑆𝑚
𝑟,𝑑𝑟 : = ∑1≤𝑖1<𝑖2<⋯<𝑖𝑚≤𝑑𝑟 𝑥𝑟,𝑖1

𝑘 …𝑥𝑟,𝑖𝑚
𝑘 , 𝑟 = 1,2,… , 𝑛;   𝑚 = 1,2,… , 𝑑𝑟 . 
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Then  

 𝑏𝑟,𝑚
𝑑𝑟 = (𝑚 − 1)𝑆𝑚

𝑟,𝑑𝑟 + (−1)𝑚𝑎𝑟,𝑚 , 𝑟 = 1,2,… , 𝑛;   𝑚 = 1,2,… , 𝑑𝑟 . 

For any given 1 ≤ 𝑖 < 𝑗 ≤ 𝑑𝑟 , 𝑟 = 1,2,… , 𝑛, we define the polynomials:  

 𝜔𝑖𝑗
𝑟,𝑑𝑟(𝑥) = (𝑥 − 𝑥𝑟,1

𝑘 )… (𝑥 − 𝑥𝑟,𝑖−1
𝑘 )(𝑥 − 𝑥𝑟,𝑖+1

𝑘 )… (𝑥 − 𝑥𝑟,𝑗−1
𝑘 )(𝑥 − 𝑥𝑟,𝑗+1

𝑘 )… (𝑥 − 𝑥𝑟,𝑑𝑟
𝑘 ). 

We have the following theorem. 

 

Theorem A. [37] Suppose that for some 1 ≤ 𝑖 < 𝑗 ≤ 𝑑𝑟, 𝑟 = 1,2, … 𝑛, the sequence of approximations 

𝑥𝑟,1
𝑘 , … , 𝑥𝑟,𝑑𝑟

𝑘 , 𝑟 = 1,2,… , 𝑛, satisfies the conditions  

 ∑𝑑𝑟𝑚=1 (−1)
𝑚𝑏𝑟,𝑚

𝑑𝑟 [𝜔𝑖𝑗
𝑟,𝑑𝑟(𝑥𝑟,𝑗

𝑘 )(𝑥𝑟,𝑖
𝑘 )

𝑑𝑟−𝑚
+𝜔𝑖𝑗

𝑟,𝑑𝑟(𝑥𝑟,𝑖
𝑘 )(𝑥𝑟,𝑗

𝑘 )
𝑑𝑟−𝑚

] = 0, (4) 

  

 𝑟 = 1,2,… , 𝑛. 
Then 𝑥𝑟,𝑖

𝑘+1 = 𝑥𝑟,𝑗
𝑘+1, 𝑟 = 1,2,… , 𝑛, and thus, the (k+2)-th step of the Weierstrass method cannot be performed. 

 

The set 𝐷𝑓[𝑓1,…,𝑓𝑛] of the non-attractive starting points is the set of points satisfying equations (4). 

 

Example 1. We consider the system (Mamat et al. [3], Goulianis et al. [1]):  

 𝑓𝑖(𝑥) = 𝑥𝑖
2 + 𝑥𝑖 − 2 = 0, 𝑖 = 1,2,… , 𝑛. (5) 

 

Let 𝑛 = 2. The non-attractive set 𝐷𝑓[𝑓1,𝑓2] is given by (see, (4))  

 𝐷𝑓[𝑓1,𝑓2] = ⋃
2
𝑖=1 𝐷𝑓𝑖 , 

where  

 
𝐷𝑓1: 2𝑥1,1

𝑘 𝑥1,2
𝑘 + 𝑥1,1

𝑘 + 𝑥1,2
𝑘 − 4 = 0,

𝐷𝑓2: 2𝑥2,1
𝑘 𝑥2,2

𝑘 + 𝑥2,1
𝑘 + 𝑥2,2

𝑘 − 4 = 0.
 

 

The divergent set of the system (5) consists of the union of the hyperbolas of type (see Fig.1)  

 𝑦 =
4−𝑥

2𝑥+1
. 

 

 

 
 

Figure 1: The hyperbola 𝑦 =
4−𝑥

2𝑥+1
. 

   

Example 2. We consider the system  

 |

𝑓1(𝑥) = 𝑥
2 − 1 = 0,

𝑓2(𝑥) = 𝑥
2 − 𝑥 − 2 = 0,

𝑓3(𝑥) = 𝑥
3 + 1 = 0

 (6) 
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which has root −1. The non-attractive set 𝐷𝑓[𝑓1,𝑓2,𝑓3] is given by (see, (4))  

 𝐷𝑓[𝑓1,𝑓2,𝑓3] = ⋃
3
𝑖=1 𝐷𝑓𝑖 , 

where  

 

𝐷𝑓1: 𝑥1,1
𝑘 𝑥1,2

𝑘 − 1 = 0,

𝐷𝑓2: 𝑥2,2
𝑘 (2𝑥2,1

𝑘 − 1) = 4 + 𝑥2,1
𝑘 ,

𝐷𝑓3: (𝑥3,1
𝑘 − 𝑥3,2

𝑘 )2(𝑥3,3
𝑘 )2 + (2 + 𝑥3,1

𝑘 (𝑥3,2
𝑘 )2 + (𝑥3,1

𝑘 )2𝑥3,2
𝑘 )𝑥3,3

𝑘

           −(2(𝑥3,1
𝑘 )2(𝑥3,2

𝑘 )2 + 𝑥3,1
𝑘 + 𝑥3,2

𝑘 ) = 0.

 

 

The divergent set of the system (6) consists of the union of the hyperbolas (see Fig.2–Fig.3)  

 𝑥1,2
𝑘 =

1

𝑥1,1
𝑘 ,   𝑥2,2

𝑘 =
4+𝑥2,1

𝑘

2𝑥2,1
𝑘 −1

 

 

and surface (see Fig. 4).  

 𝑧 =
−(2+𝑥𝑦2+𝑥2𝑦)+𝜀√(2+𝑥𝑦2+𝑥2𝑦)2+4(𝑥−𝑦)2(2𝑥2𝑦2+𝑥+𝑦)

2(𝑥−𝑦)2
, 𝜀 = ±1, 

 

 (𝑧 = 𝑥3,3
𝑘 ;   𝑥 = 𝑥3,1

𝑘 ;   𝑦 = 𝑥3,2
𝑘 ). 

 

 

 
 

Figure 2: The hyperbola 𝑥1,2
𝑘 =

1

𝑥1,1
𝑘 . 

   

 
 

Figure 3: The hyperbola 𝑥2,2
𝑘 =

4+𝑥2,1
𝑘

2𝑥2,1
𝑘 −1

. 
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Figure 4: The surface 𝑧. 
   

 

Remarks 

In the Example 1, the Newton’s procedure does not converge for 𝑛 > 2 and Weierstrass procedure fails for the 

non-attractive set 𝐷𝑓[𝑓1,𝑓2] of initial approximations. 

The Example 2 is very instructive and divergent set of initial approximations 𝐷𝑓[𝑓1,𝑓2,𝑓3] is very complicated. 

In studying the equilibrium state of some classes of differential systems that require the study of polynomial 

systems of the type (2) it is extremely important to "separate" the non-attractive initial approximations to the roots. 

For an arbitrary 𝑛 the description of conditions (4) it is not difficult due to the existing symmetry. 

You will explicitly note that for all known classic and newer algorithms like Chebishev, Halley, Ehrlich, Abert, 

Nourein, Dvorchuk, Petkovic, Kyurkchiev, Iliev, Proinov and others(see, [29], [31]–[33], [35]–[36], [38]–[43]) 

to solve the assigned task are derived and described in details respective non-attractive sets of initial data that are 

permanently present in the implemented scientific platform (intellectual property, see, for instance [44]). 

This is a very important element in dealing with issues of the mentioned issues. 

First of all, the user of such algorithms usually is naturalist and a priori is not supposed to be a specialist in 

"Applied Mathematics". 

In this sense, the requirements to user of choosing initial approximations by using different subroutines and 

products included in program environments and platforms are highly restrictive. 

Program modules in contemporary environments must be so set to automatically report ”non-attractive sets” (as 

we have noted - it is not difficult their description) and to provide the user reliable solution to the problem. 

Goulianis et al. [1] showed that the proposed adaptive neural network algorithm is characterized by fast 

convergence for high–dimensional systems. 

Of course analogous questions regarding the appropriate choice of initial approximations can be found in the 

existing and described in the literature adaptive neural network solvers. 

Inevitably that will mean – ”better CPU–time”. 

 

Solving the more general polynomial systems class of the type (1) 

General iteration process, which possesses order of convergence 𝑡 is constructed in [32], [33]. From this process, 

Newton’s iteration formula (𝑡 = 2) and Halley’s iteration formula (𝑡 = 3) are received as particular cases. The 

used technique is based on generalized Taylor’s formula. 

 

Let the system of equations  

 𝑓𝑖(𝑥⃗𝑘) = 0, 𝑖 = 1,2, . . . , 𝑛 (7) 

be given. 

Supposed that 𝑓𝑖 and the partial derivatives of these functions of sufficiently high order are continuous in the 

neighborhood of solution 𝜉(𝜉1, 𝜉2, . . . , 𝜉𝑛). 
Both Newton’s and Halley’s iteration formula can be generalized when in Taylor’s formula all the terms up to 
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degree 𝑡 − 1 with respect of ℎ𝑠 will be included. Taylor’s formula is of the form  

 
0 = 𝑓𝑖 + 𝑓𝑖𝑖1

(1)
ℎ𝑖1 +

1

2!
𝑓𝑖𝑖1𝑖2
(1)
ℎ𝑖1ℎ𝑖2 +

1

3!
𝑓𝑖𝑖1𝑖2𝑖3
(1)

ℎ𝑖1ℎ𝑖2ℎ𝑖3

+. . . +
1

(𝑡−1)!
𝑓𝑖𝑖1𝑖2...𝑖𝑡−1
(1)

ℎ𝑖1ℎ𝑖2 . . . ℎ𝑖𝑡−1 + 𝑂̅(𝜀𝑡).
 (8) 

 

Following the scheme by which Newton’s and Halley’s iteration formulae were developed we suppose that in the 

above consideration we have determined  

 ℎ𝑗 = 𝐻𝑡−2
𝑗
+ 𝑂𝑗(𝜀𝑡−1) (9) 

 

and  

 ‖𝑂𝑖(𝜀
𝑡−1)‖ ≤ 𝑀𝑡−1

∗ 𝜀𝑡−1. (10) 

 

Then, after replacing ℎ𝑗 from (10) in (9) we receive  

 

0 = 𝑓𝑖 + (𝑓𝑖𝑖(1)
1 +

1

2!
𝑓𝑖𝑖1𝑖2
(1)
𝐻𝑡−1
𝑖2 +

1

3!
𝑓𝑖𝑖1𝑖2𝑖3
(1)

𝐻𝑡−1
𝑖2 𝐻𝑡−1

𝑖3

+. . . +
1

(𝑡−1)!
𝑓𝑖𝑖1𝑖2...𝑖𝑡−1
(1)

𝐻𝑡−1
𝑖2 𝐻𝑡−1

𝑖3 . . . 𝐻𝑡−1
𝑖𝑡−1) ℎ𝑖1 +

1

2!
𝑓𝑖𝑖1𝑖2
(1)
𝑂𝑖2(𝜀𝑡−1)ℎ𝑖1

+
1

3!
𝑓𝑖𝑖1𝑖2𝑖3
(1)

(𝑂𝑖2(𝜀𝑡−1)𝐻𝑡−1
𝑖3 +𝑂𝑖3(𝜀𝑡−1)𝐻𝑡−1

𝑖2 + 𝑂𝑖2(𝜀𝑡−1)𝑂𝑖3(𝜀𝑡−1)) ℎ𝑖1

+. . . +
1

(𝑡−1)!
𝑓𝑖𝑖1𝑖2...𝑖𝑡−1
(1)

(𝑂𝑖2(𝜀𝑡−1)𝐻𝑡−1
𝑖3 𝐻𝑡−1

𝑖4 . . . 𝐻𝑡−1
𝑖𝑡−1

+. . . +𝐻𝑡−1
𝑖2 (𝜀𝑡−1)𝐻𝑡−1

𝑖3 (𝜀𝑡−1). . . 𝑂𝑖𝑡−1(𝜀𝑡−1)

+𝑂𝑖2(𝜀𝑡−1)𝑂𝑖3(𝜀𝑡−1). . . )ℎ𝑖1 + 𝑂̅𝑖(𝜀
𝑡).

 (11) 

 

The system (11) we write in the form  

 0 = 𝑓𝑖 + 𝑓𝑖𝑖1
(𝑡)
ℎ𝑖1 + 𝑂𝑖(𝜀

𝑡), (12) 

 

where we substitute  

 𝑓𝑖𝑖1
(𝑡)
= 𝑓𝑖𝑖1

1 +
1

2!
𝑓𝑖𝑖1𝑖2
(1)
𝐻𝑡−1
𝑖2 +. . . +

1

(𝑡−1)!
𝑓𝑖𝑖1𝑖2...𝑖𝑡−1
1 𝐻𝑡−1

𝑖2 𝐻𝑡−1
𝑖3 . . . 𝐻𝑡−1

𝑖𝑡−1  

 

and  

 𝑂𝑖(𝜀
𝑡) =

1

2!
𝑓𝑖𝑖1𝑖2
(1)
𝑂𝑖2(𝜀𝑡−1)ℎ𝑖1 +

1

3!
𝑓𝑖𝑖1𝑖2𝑖3
(1)

(𝑂𝑖2(𝜀𝑡−1)𝐻𝑡−1
𝑖3 + 𝑂𝑖3(𝜀𝑡−1)𝐻𝑡−1

𝑖2  

 

 +𝑂𝑖2(𝜀𝑡−1)𝑂𝑖3(𝜀𝑡−1)) ℎ𝑖1+. . . +
1

(𝑡−1)!
(𝑂𝑖2(𝜀𝑡−1)𝐻𝑡−1

𝑖3 𝐻𝑡−1
𝑖4 . . . 𝐻𝑡−1

𝑖𝑡−1 

 

 +. . . +𝐻𝑡−1
𝑖2 (𝜀𝑡−1)𝐻𝑡−1

𝑖3 (𝜀𝑡−1). . . 𝑂𝑖𝑡−1(𝜀𝑡−1)+. . . )ℎ𝑖1 + 𝑂̅𝑖(𝜀
𝑡). 

 

The elements of reciprocal matrix of {𝑓𝑖𝑖1
(𝑡)
} we denote with 𝑓(𝑡)

𝑖𝑖1 . From the system (12) we determine ℎ𝑖1  

 ℎ𝑖1 = −𝑓(𝑡)
𝑖1𝑠𝑓𝑠 + 𝑓(𝑡)

𝑖1𝑠𝑂𝑠(𝜀
𝑡). (13) 

We substitute 𝐻𝑡−1
𝑖1 = −𝑓(𝑡)

𝑖1𝑠𝑓𝑠. 

The following iteration formula can be formed:  

 𝑥𝑘+1
𝑠 = 𝑥𝑘

𝑠 +𝐻𝑡−1
𝑠 , (14) 

where 𝑡 denotes order of convergence. 

Let us form the expression  

 𝜉𝑠 − 𝑥(𝑘)
𝑠 −𝐻𝑡

𝑠 = 𝜉𝑠 − 𝑥(𝑘+1)
𝑠 = ℎ𝑠 −𝐻𝑡

𝑠 = 𝑂𝑠(𝜀𝑡). 

We have  

 ‖𝑂𝑖(𝜀
𝑡)‖ ≤

1

2!
‖𝑓𝑖𝑖1𝑖2

(1)
‖‖𝑂𝑖2(𝜀𝑡−1)‖‖ℎ𝑖1‖ 

 

 +
1

3!
(‖𝑓𝑖𝑖1𝑖2𝑖3

(1)
‖‖𝑂𝑖2(𝜀𝑡−1)‖‖ℎ𝑖1‖ + ‖𝑓𝑖𝑖1𝑖2𝑖3

(1)
‖‖𝑂𝑖3(𝜀𝑡−1)‖‖ℎ𝑖1‖+. . . ) 
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 +. . . +
1

(𝑡−1)!
(‖𝑓𝑖𝑖1𝑖2...𝑖𝑡−1

(1)
‖‖𝑂𝑖2(𝜀𝑡−1)‖‖𝐻𝑡−1

𝑖3 ‖. . . ‖𝐻𝑡−1
𝑖𝑡−1‖ 

 

 +. . . + ‖𝑓𝑖𝑖1𝑖2...𝑖𝑡−1
(1)

‖‖𝐻𝑡−1
𝑖2 ‖‖𝐻𝑡−1

𝑖3 ‖. . . ‖𝑂𝑖𝑡−1(𝜀𝑡−1)‖+. . . ) + ‖𝑂̅(𝜀𝑡)‖ 

and  

 ‖𝑂̅𝑖(𝜀
𝑡)‖ = ‖𝑓𝑖𝑖1𝑖2...𝑖𝑡

(1)
ℎ𝑖1ℎ𝑖2 . . . ℎ𝑖𝑡‖ ≤ ‖𝑓𝑖𝑖1𝑖2...𝑖𝑡

(1)
‖‖ℎ𝑖1‖‖ℎ𝑖2‖. . . ‖ℎ𝑖𝑡‖ ≤ ‖𝑓𝑖𝑖1𝑖2...𝑖𝑡

(1)
‖ 𝜀𝑡, 

 

where all summands which contained multipliers 𝜀𝑠 are dropped, when 𝑠 > 𝑡. 
Taking into account the fact that functions 𝑓𝑖 are sufficiently smooth and that in above estimates all summands 

are of order 𝑂𝑖(𝜀
𝑡). 

 

We conclude that the following upper bound is valid  

 ‖𝑂𝑖(𝜀
𝑡)‖ ≤ 𝑀𝑡

∗𝜀𝑡, (15) 

where 𝑀𝑡
∗ is a positive constant. 

 

Using (15) we receive the inequalities  

 ‖𝜉𝑠 − 𝑥(𝑘+1)
𝑠 ‖ ≤ ‖𝑂𝑠(𝜀𝑡)‖ ≤ 𝑀𝑡

∗𝜀𝑡‖𝑓𝑡
𝑖1𝑙‖. 

 

Example 3. We consider the system  

 |
𝑓1(𝑥) = 0.25𝑥1

2 + 𝑥2
2 − 1 = 0,

𝑓2(𝑥) = 𝑥1
2 − 2𝑥1 + 𝑥2

2 = 0,  (16) 

 

 

 
Figure  5: The structure of neural solver for Example 3. [1]. 

   

When we apply formula (14) to solve system from Example 3 for 𝑡 = 3 with initial approximations (1;−1), (1; 1) 
and (3; 1) with accuracy 15 decimal digits the respectively results are  

  

(0.666666666666667;−0.942809041582063), 
 

 (0.666666666666667;0.942809041582063) 
and  

 (2.0000000000000000;0.000000000000001) 
for 4 iterations only. 
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For specifying the double root (2,0), appropriate modification of the method outlined above is used. 

 

  Example 4. We consider the system  

 |
𝑓1(𝑥) = 𝑥1𝑥2

2 − 3𝑥1
3𝑥2
2 − 5 = 0,

𝑓2(𝑥) = 2𝑥1
3𝑥2
2 + 2𝑥1

4𝑥2
4 − 4𝑥1

2𝑥2
4 + 3 = 0, (17) 

 

 
Figure  6: The structure of neural solver for Example 4. [1]. 

   

 

We have used the formula (14) for finding solutions of system from Example 4 for 𝑡 = 3 with initial 

approximations (−1.9; 0.7), (−1.9;−0.7), (−3.6; 0.2) and (−3.6;−0.2) with accuracy 15 decimal digits and the 

respectively results are  

 (−1.70807408954102;0.614482226647498), 
 

 (−1.70807408954102;−0.614482226647499), 
 

 (−3.32903633273033;0.215813224817305) 
and  

 (−3.32903633273034;−0.215813224817305) 
for 4 iterations only. 

 

 

 
Figure  7: Higher order recurrent neural networks. 
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CONCLUDING REMARKS 
Part of the notes in “Remarks” remain valid for solving arbitrary systems of nonlinear equations. 

Here is also interesting the question of isolating the non-attractive initial approximations using different 

modifications of the classic Newton–Broyden type methods with high order of convergence 𝑡. 
The much broader issue of selecting initial data for solving polynomial systems of type (1) can be considered as 

open. 

Sigmoidal functions (also known as ”activation functions”) find multiple applications to neural networks [10]–

[15]. 

In conclusion, we will note that the newly constructed recurrently generable families of sigmoidal and activation 

functions (see, for instance [16]–[28]) can be used with success in creating a new higher order recurrent neural 

networks (Fig. 7). 

Of course the specialists working in this important area also have the task of exploring eventual possibility for 

minimizing CPU–time using the existing and new ones FANS. 
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